
Eur. Phys. J. B 62, 209–214 (2008)
DOI: 10.1140/epjb/e2008-00145-6 THE EUROPEAN

PHYSICAL JOURNAL B

Average crossing number of Gaussian and equilateral chains
with and without excluded volume

P.M. Diesinger1,a and D.W. Heermann2

1 Institute of Theoretical Physics, Heidelberg University, 69118 Heidelberg, Germany
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Abstract. We study the influence of excluded volume interactions on the behaviour of the mean average
crossing number (mACN) for random off-lattice walks. We investigated Gaussian and equilateral off-lattice
random walks with and without ellipsoidal excluded volume up to chain lengths of N = 1500 and equilateral
random walks on a cubic lattice up to N = 20000. We find that the excluded volume interactions have
a strong influence on the behaviour of the local crossing number 〈a(l1, l2)〉 at very short distances but
only a weak one at large distances. This behaviour is the basis of the proof in [3,7] for the dependence of
the mean average crossing number on the chain length N . We show that the data is compatible with an
Nln(N)-bahaviour for the mACN, even in the case with excluded volume.

PACS. 61.82.Pv Polymers, organic compounds

1 Introduction

The mean average crossing number (mACN) was intro-
duced in [1,2] as a simplified version of the writhe of a
random walk. For a given linear closed polymer the cross-
ing number associated with a particular projection of the
random walk is the number of crossings one observes when
the polymer is projected to a plane under the given pro-
jection direction. The average crossing number (ACN) of
the polymer is then defined as the average of this cross-
ing number over all possible projection directions [3]. The
mean average crossing number (mACN) is the average
of the ACN over all possible random walks of a certain
length N . Diao suggested to use the mACN, which was
called ‘entanglement complexity’ in a previous work [4],
as a measure of entanglement to determine whether a
(closed) polymer chain is highly or weakly knotted [5].
Grassberger [6] showed that the mACN is mainly a mea-
sure for the ‘opacity’ of a random walk.

For equilateral and for Gaussian random walks without
excluded volume Diao [3,7] succeeded in showing that the
mean average crossing number behaves c1N ln N + c2N .
In [1,2] it was shown that the mACN satisfies mACN ∝
Nα for N → ∞ with α ≈ 1.2 [8].

In the next section we investigate the behaviour of the
mACN of equilateral and Gaussian random walks with
and without excluded volume. Chains without excluded
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volume interactions are called ‘phantom chains’ in the
text.

2 The mean average crossing number

We start by investigating the effects of excluded volume in-
teractions on the mean average crossing number (mACN)
of equilateral and Gaussian random walks which represent
polymer classes. A Gaussian Random vector −→v = (x, y, z)
is a random point with coordinates x, y and z which are in-
dependent standard normal variables (with means = 0 and
variance = 1). A Gaussian random walk (or chain) of n
steps consists of n+1 points X{0 ... n} such that Xk+1−Xk

(k = 0, 1, ..., n − 1) are Gaussian random vectors and
X0 = (0, 0, 0)t.

A vector U = (u, v, w)t is called uniformly distributed
on the unit sphere S2, if the probability density function
of U is ϕ(U) = 1

4π for |U | = 1 and ϕ(U) = 0 other-
wise. If U1, U2, ..., Un are n independent random vectors
uniformly distributed on S2, then an equilateral random
walk (or chain) is defined as the sequence of the points

X0 = O, Xk =
k∑

i=1

Ui, k = 1, 2, ..., n in R
3.

A hard-core ellipsoidal potential was used to simulate
the excluded volume interactions of the chain segments
since many polymers can be modeled by such a potential
(cf. Fig. 1).
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Fig. 1. An example for an equilateral chain of length N = 25
with excluded volume. The dashed line is theprojection of the
chain onto the xy-plane and shows seven crossings. The average
crossingnumber of this particular chain is ACN ≈ 5.29 and the
mean average crossing number of all equilateral chains of length
25 is 3.13. The greyscale gives the height of the ellipsoids.

To understand the effect of the excluded volume in-
teraction, let us focus our attention initially on the scale
invariant

a(l1, l2) =
1
2π

∫

γ1

∫

γ2

|γ̇1(t), γ̇2(s), γ1(t) − γ2(s)|
‖γ1(t) − γ2(s)‖3

dt ds

(1)
which is the basis for the prediction [3,7]

mACNGaussian(N) = 1
2π N ln(N) + O(N) (2)

≈ 1
2π N ln(N) + c1N (3)

mACNequilateral(N) = 3
16N ln(N) + O(N) (4)

≈ 3
16N ln(N) + c2N (5)

for the phantom and equilateral chains of length N with-
out excluded volume. In the above l1 and l2 are segments
of the chain and γ is the arc-length parametrization (the
above invariant can be considered as the first element in
a hierarchy [9,10]).

In [3,7] it was shown that for two chain segments l1, l2
on average a(l1, l2) behaves as

〈a(l1, l2)〉 =
1

2πd2
+ O

(
1

d2.5

)

(6)

for Gaussian phantom and

〈a(l1, l2)〉 =
1

16d2
+ O

(
1
d3

)

(7)

for equilateral phantom chains, where d is the (fixed) dis-
tance between the two considered chain segments l1 and l2

and a(l1, l2) is averaged over all possible orientations of l1
and l2. So far no prediction has been derived for the case
of chains with excluded volume interaction. Hence it is
important to ask how far the estimate also applies to the
case of excluded volume interaction and how differences
manifest themselves.

Using Monte Carlo simulations [11,12] we calculated
the average crossing number by counting the crossings in
numerous projections of γ and taking the average over
all these crossing numbers. For every calculated average
crossing number, we averaged over 1000 randomly chosen
planes to obtain a good estimate of the actual ACN value.

Four types of chains have been investigated by us:
Gaussian and equilateral chains with and without ex-
cluded volume. All chains are open and start at the origin.
The excluded volume chains were generated with an (off-
lattice) Pivot-Algorithm, which for example can be found
in [18]. We used a hard-core excluded volume potential, in
order to speed up the simulations. Between two consecu-
tive chain points there is an ellipsoidal hard-core excluded
volume (cf. Fig. 1). When generating chains with excluded
volume interactions the Pivot-Algorithm simply rejects all
chain conformations which have at least two overlapping
ellipsoids.

Roughly speaking the mACN depends on two quanti-
ties: the behaviour of 〈a(l1, l2)〉 in dependence of d and
the probability distribution (pdf) of d. To understand the
effects on the mACN due to excluded volume, it is nec-
essary to understand how excluded volume interactions
affect these two parameters.

For 〈a(l1, l2)〉 we find that the excluded volume in-
teractions do not have any measurable effect for distances
larger than two (equilateral case) or three (Gaussian case)
chain segments (see Fig. 2). A calculation of correlation
lengths for the orientation of the chain segments leads
to similar results, namely dc ≈ 1.39 for equilateral and
dc ≈ 2.81 for Gaussian chains. Each point of Figures 2, 3
and 4 for 〈a(l1, l2)〉 is an average over at least 104 points.
The dashed lines in this Figure show the leading order
term for the theoretical prediction of [3,7] (cf. Eqs. (6)
and (7)). Although these predictions have been calculated
to describe the behaviour of 〈a(l1, l2)〉 for large d, they
already fit very well for d > 1 for chains with and without
excluded volume. Therefore they might be used to de-
rive some estimations of the mACN behaviour for chains
with excluded volume, too (only the large d case is impor-
tant here, because these chains contribute mostly to the
mACN).

There seems to be a discontinuity at d = 0, since
〈a(l1, l2)〉 should vanish at the origin according to the
Gauss invariant [3,7]. Figure 3 shows the comparison of
our numerical results with the theoretical prediction of
the papers cited above. One can see, that the predicted
behaviour is not only good in the case of phantom chains
but also in the case of chains with excluded volume.

In contrast to 〈a(l1, l2)〉 there is a huge effect of the
excluded volume interactions on the probability distribu-
tions of d which can be seen in Figure 4 for equilateral
and Gaussian chains of length N = 100 (together with
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Fig. 2. The leading order term for the theoretical
prediction of the large d case [3,7] and the numer-
ical results for 〈a(l1, l2)〉 of Gaussian and equilat-
eral chains for small values of d. One can roughly
see that 〈a(l1, l2)〉 is discontinuous at d = 0. Every
data point represents an average over at least 104

values.
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n Fig. 3. Shown are the ratios between the pre-
diction for the leading order term for the in-
variant 〈a(l1, l2)〉 and the simulation results.
While the prediction pertains to chains with-
out excluded volume the results show the
agreement with the theoretical predictions are
excellent for distances larger than 10 for chains
with and without excluded volume. The strong
fluctuations at the end for the larger distances
are a consequence of the plotted ratio. A sin-
gle point in the figure represents at least an
average over 10 000 simulation results.

the numerical results for 〈a(l1, l2)〉 on a larger scale in the
background of the figure). One can see that the chains with
excluded volume are much more stretched as expected due
to the enhanced value of ν for the radius of gyration than
those without. The Gaussian chains are longer than the
equilateral ones. This is a consequence of the Gaussian
probability distribution since the mean length of Gaussian
chain segments is about 1.6 and the length of all equilat-
eral chain segments is normalized.

The pdfs of the equilateral chains show peaks at d ≈ 2.
This is a feature of the equilateral chains since the dis-
tance of the endpoints of two consecutive line segments is
always larger than 0 and smaller than 2. If d exceeds 2,

the probability to find monomers with a distance d drops
immediately. In the case of the equilateral chains with ex-
cluded volume the end to end distance of two consecutive
line segments is always larger than

dmin = sin
(αmin

2

)
= 0.66 with αmin = 83.62 degrees,

where the minimal value of the angle α between two con-
secutive chain segments is determined by our ellipsoidal
excluded volume model. The pdf of the equilateral chains
with excluded volume has two discontinuity points (at
dmin = 0.66 and d = 2, cf. Fig. 4). The one without ex-
cluded volume shows only the one at d = 2 as explained
above.
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Fig. 4. Shown are the distance
probability density functions (pdf)
for Gaussian and equilateral chains
with the cases of non-and excluded
volume. In both cases the distri-
bution is rather different but yield
the same behaviour on average (cf.
Fig. 3).

Fig. 5. Shown are the mACN for Gaussian chains
with and without excluded volume and the best fit
for each one (cf. Tabs. 1 and 2). The inset shows
the end-to-end distance for the equilateral chains
over its theoretical prediction N2νi (ν1 = 0.5 and
ν2 = 0.588). As this ratio converges to one, one
can see that the end-to-end distance follows the
expected behaviour. Every data point of the inset
represents an average over at least 104 points, and
every point of the main figure is an average of at
least 105 points.

Figures 5 and 6 show that the total mACN for chains
with excluded volume is much lower than for phantom
chains. As pointed out above this is mainly a consequence
of the much broader distance pdf for chains with ex-
cluded volume. The orientation effects (i.e. the changes of
〈a(l1, l2)〉) play only a minor role. As these random walks
are a model for equilibrated polymers in solution and as
these polymers do have excluded volume interactions one
should expect a much lower ACN for these polymers than
predicted by [3,7]. Furthermore, a linear correction term

to the predicted N ln N-behaviour (cf. Fig. 7) seems to
worsen the fits in the case of the chains with excluded vol-
ume, as early points are all above the dashed line and late
points are below the line. Each data point in the Figures,
which show the mACN, is an average over at least 105

points.
The prediction for the mACN by Diao et al. [3,7] as

stated in equations (3) and (5) are in good agreement
with our simulations. Our simulation results confirm these
results, and we calculated a factor of c2 = −0.3051 for the
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Fig. 6. The mACN of equilateral random walks on a cubic lattice with and without excluded volume interactions.
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Fig. 7. The error term of the theoretical
prediction of the mean average crossing
number is negative and much smaller for
the chains with excluded volume. Every
data point represents again an average
over at least 105 points.

equilateral chains and a factor of c1 = −0.2265 for the
Gaussian ones.

The fit results are complied in the following two ta-
bles. Please note that the data for the equilateral chains
with excluded volume reaches up to N = 1500 for off-
lattice chains and up to N = 20000 for chains on a cu-
bic lattice, whereas the mACN for the Gaussian chains
reaches to N = 300 (off-lattice). The summed square of
residuals (sse) and the coefficient of multiple determina-
tion (rsquare) are also given in Tables 1 and 2. The power

Table 1. Different data fits.

chains without excluded volume
data fit a sse rsquare

equilateral (3/16)N ln(N) + aN –0.3051 445.2 0.9998
Gaussian (1/2π)N ln(N) + aN –0.2265 61.4 1.0000

law fits with b > 1 will beat n ln(n) for large n. They
are shown here to give a approximation of the mACN for
smaller chains.
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Table 2. Fitting parameters.

Gaussian chains with excluded volume

fit a b sse rsquare

aNb 0.03239 1.376 10.07 0.9988

(1/2π)N ln(N) + aN –0.5968 —– 537.53 0.9349

aN ln(N) + bN 0.07468 –0.1553 16.3505 0.9980

(1/2π)N log(N)a 0.2426 —– 310.4 0.9624

equilateral chains with excluded volume

aNb 0.06382 1.232 1306.1 0.9952

(3/16)N ln(N) + aN –0.9812 —– 29987 0.8896

aN ln(N) + bN 0.03914 0.05466 241.58 0.9991

(3/16)N log(N)a 0.2902 —– 1010.1 0.9963

3 Discussion

Our results in the first part show that the topological in-
variant and the behaviour of 〈a(l1, l2)〉, which are the basis
for the proof by Diao [3,7] and co-workers, are weakly in-
fluenced by excluded volume interactions. Hence it is still
unclear, especially in the light of the inconclusive simula-
tion data, whether the proven law c1N ln N + c2N for the
non-excluded volume case changes to a power law, as sug-
gested by [1,2]. Much larger chains are needed to clearly
discern between the possibilities. A rough estimate shows
that we need chains that are at least ten times longer.
Here the problem is that despite the well-developed Pivot
algorithm the computation of the excluded volume inter-
action is so time-consuming that for now it seems to be
possible to do such a calculation only expending a truly
fair amount of computing resources.

We are very grateful to J. Odenheimer and K. Binder for dis-
cussions.
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